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Critical—off-critical interface in the Ising quantum chain
and conformal invariance
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Abstract. The low-energy excitation spectrum of an Ising quantum chain in a transverse
field which is critical (h=J=1) for 1 < n=< L/2 and off-critical (h# J) for L/2<n=<Lis
calculated up to O(L™'). Interface critical exponents are determined numerically in the
odd sector and exactly in the even sector using finite-size scaling. One gets an ordinary
surface transition when h>J and an extraordinary surface transition when h<J/ The
gap-exponent relation is verified, the mass gaps and the levels degeneracy are in agreement
with conformal invariance.

1. Introduction

Using conformal invariance (Belavin ef al 1984, Cardy 1987, ltzykson et al 1988) an
infinite 2 system at its critical point may be mapped onto a strip with finite width L
on which the lowest gaps of the Hamiltonian associated with the transfer operator in
the extreme anisotropic limit (Kogut 1979, Henkel 1990) vanish as L™' with amplitudes
proportional to the scaling dimensions of the corresponding operators {Cardy 1984).
Furthermore the energy spectrum displays tower-like structures with equidistant levels,
the degeneracy of which is completely determined by conformal invariance.

Although translational and rotational invariance are in principle required, it has
been shawn that conformal invariance is preserved with localized defects (Henkel and
Patkos 1987, 1988, Henkel et al 1989) and even for extended defects (Hinrichsen 1990)
provided the defect configurations are commensurate. In the case of a long-range
marginal inhomogenity the gap-exponent relations are still verified (Burkhardt and
Igloi 1990, Igloi er af 1990) and tower-like structures observed but the degeneracy of
the levels is not yet understood.

In the present work, we show that conformal invariance still holds for a critical-off-
critical interface in the 20 Ising model. This problem differs from the case considered
previously (Hinrichsen 1990) where the extended defects were critical sectors in the
plane with modified values of the critical interactions. We consider the quantum Ising

chain Hamiltonian (figure 1)
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Figure 1. Critical-off-critical interface in the l‘sing quantum chain in a trangverse field: &
and J(#1) are the transverse field and the first-neighbour interaction in the off-critical part.

where ¢ and o’ are Pauli spin operators, b and J # 1 the transverse field and the
nearest-neighbour coupling in the off-critical part { L/2< n = L). The prefactor in (1.1)
has been introduced to ensure that the equations of motion are conformally invariant
in the critical region (von Gehlen et al 1985). The chain length is assumed to be even
and periodic boundary conditions are imposed with

o (L+1)=0a(1). (1.2)

This paper is organized as follows. In section 2 we calculate the [ow-energy excitation
spectrum of H from which the energy levels in the two parity sectors are constructed.
This is done using fermion techniques {Lieb et al 1961), the excitations being obtained
as the solutions of an eigenvalue problem. In section 3 the corresponding eigenvectors
are determined allowing us to get the dimension of the interface energy operator x,
through finite-size scaling. The dimension of the magnetization operator x,, is obtained
through a numerical finite-size scaling study on the spin Hamiltonian. The results are
discussed in section 4.

2. Low-energy excitation spectrum

The spin Hamiltonian (1.1) commutes with the parity operator P= H,’;=, o*(n) so that
the eigenvalues are either even (P =-1) or odd (P =-1). Using the Jordan- Wigner
transformation {Jordan and Wigner 1928) and omitting a constant term, one gets

H=- Z [c*(m)e(n)+3(c (n) —ec(n){cT(n+1)+c(n+1))]

- i [hc (n)e(n)+= (c (n)—c(m)(ct (n+1)+c(n+1))} (2.1)
n=L/2+1
with the boundary conditions
c(n+1)=—Pec(l) (2.2a)
cHn+1)=~Pc*(1). (2.2b)

This is a quadratic form in fermion operators in each parity sector which may be
diagonalized through the Bogoliubov transformation (Lieb et al 1961):

M= i (gon ™ () + ync(n)) (2.3a)
n=1

P f (gt (n)+ hpc(n)) (2.3b)

where the canonical operators satisfy the fermion anticommutation relations
{’pr, ﬂp'}={77:, 7?:'}=0 (2.4a)
{npy ’7;'} = Bpp’- (24b)
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In this way, one gets two diagonal Hamiltonians
H*=F A (nymp~1) (2.5)
P

one for each parity sector and the even (0dd) eigenstates of H correspond to the even
(0dd) eigenstates of H*"") whereas the remaining states acquire physical meaning only
for antiperiodic boundary conditions.

Introducing the normalized eigenvectors

$p(n)={(=1)"(gon + hpp) (2.6a}
‘ﬂp(n):(—l)n(gpn _hpn) (ZGb)
related through
—h(n)g,(n)+J{n}g,(n+1)=A,¢,(n} (2.7}
with
L
hiny=I{n)=1 (n=1,5) (2.8a)
L
h(n)=h (n=5+1, L) (2.80)
L
Jin)=1J (n=5+1,L—1) (2.8¢)
J(Ly=-PJ (2.84)

the (A})* are solutions of the eigenvalue problem
hin=1)J(n—-1}¢,(n—1)
+({(A) =R () =T (n=1)¢,(n)+ h(n)(n)p,(n+1)=0 (2.9)

with J(0) =J(L} and the same notations as above. In the critical part (n=2to L/2)
one gets

G1,(n—1)+[(A;) =211, (n)+ ¢, (n+1)=0 (2.10)
s0 that

$ip(ny=Ae“ +Be (2.11)
and

(A.;)2=dsm2§ (2.12)

whereas in the ofi-critical part (n=L/2+2to L—1):
B¢y, (n— 1)+ [(ASY =k =T?]dy,(n) + hIdy,(n+1)=0 (2.13)

and the components of the eigenvectors are given by

] Loy oy —ynt
dpinj=Ce" t e

—~
[
i
£

S

with:

1_+_ 2 _ 32
coshq=%ﬂ—)—. {2.15)
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The quantization of the eigenvalues (2.12} is imposed by the boundary conditions

$1,(0)+(J* = 1), (1) = = Phig, (L) (2.16a)
L L
¢'1p('2'+ 1) =¢2P(5+1) (2.165)
¢1p(1)=_P¢2p(L+l) (2.16(.')
(hP=1)o {L+1\+¢ ‘(L'z\:‘J" {£+2\ {2.16d)
AV AR CRES Il PR 0d)
leading to the linear system
[+ (-1 e*JA+[1+ (P —1) e *]B+ PhJ e**C+ PhJ e "D =0 (2.17a)
P AL : B Ay ORSY- S AL » BN (2.17b)
e“A+e B+ P IC+Pe D=0 (2.17¢)
[(hz_ l) eik([_/2+l)+eik(L/2+2)]A+[(h2_ 1) efik(f..,"2+l)+e—ik(L,‘2+2)]B
—hJ e HINC _pf 7D =, (2.17d)

The secular equation reads:

kL .  qlL kL L
2PhJ sin k sinh q+(12—1)(h2——1)sin?smh%+h1(2—h2—12)sm;smh(%—q)

kL
+ R sin?sinh(q—;—2q) +(h*+7°-2) sin(%+ k) sinhq—;

—2hJ sm(—+k\ smh(———q\ +s1n(—+2k\ smh—— (2.18)

Looking for the critical modes A, ~Q(L™"), equation (2.15} gives

2+J2
hg= +0O(L? 2.19
cosh g =—— O(L™d) (2.19q)
inh g == 601 (2.19b)
sinh g = 207 (L7} (2. )

and equation {2.18) reduces to
kL L
k cosTsinh%ﬂhz—ﬂpoujz)] =0 (2.20)
so that, using (2.12), non-vanishing solutions are obtained when

2
|Af:|=f<p+%)+0(r2) (p=0,1,2,...). (2.21)

To this order in L' the same excitations are obtained in the two parity sectors. From
equation (2.5) the ground-state energy of H™ is
E5=—1T1A;l (222)
n
and higher levels are obtained by adding fermions to the ground state with a change
of the parity for an odd number of excitations. Through a comparison with tridiagonali-
zation results for the spin Hamiltonian (figure 2), one finds that the ground state of
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Figure 2. Construction of the spectrum of H from the even levels of H™ and the odd levels
of H™. The central spectrum has been obtained through tridiagonalization of the spin
Hamittonian (L=10, J =1, top A =0.5, bottom h = 2.0). The ground state of H™ is odd
when A< L

H™ is always even whereas for H ™ it is even when h/J>1 and odd when h/J <1,
This last result is linked with the presence of a negative excitation A, <0 when h/J < 1.
Then the ground state contains one fermion and |A;| may be reinterpreted as a hole
excitation energy. The same thing happens for the homogeneous system in the ordered
phase (Pfeuty 1970). Since equation (2.21) only gives the critical modes, we have to
study numerically the behaviour of the gap between the two ground states. It turns
out that Eg — Ej vanishes exponentially with L as shown in figure 3.

The ground state of H is always even and E, = E;. Higher levels in the even sector
are constructed by adding an even number of excitations and one gets the mass gaps

2
E,*—Eo=fr+0(v2) r=2,3,4,... (2.23)

when h#J.
Since the ground state of H™ is even when /> J, an qdd number of excitations is
needed to get the energy levels of H in the odd sector and

_2n

E,-E,= 7 S+ r+0(L™ r=0,1,2,.. . h>1J (2.24)
When h <J, the ground state of H™ is odd and belongs to the spectrum of H. Up
to O(L™") this state is degenerate with the ground state, a behaviour which is related
to the onset of long-range order for the off-critical part in the thermodynamic limit,
Higher odd states of H are obtained with an even number of excitations so that

2 )
E,’——Eu=fr+O(L") r=0,2,3,... h<J, (2.25)
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Figure 3. Variation of logarithm of the gap between the ground states of H* and H™ as
a function of the chain length L for different values of the transverse field in the off-critical

part and J=1.
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Figure 4. Mass gaps and degeneracy of the levels in the two parity sectors of H for a chain
with length L =140, J =1, h=10.5, (left) and 2.0 (right).

The mass gaps and the levels degeneracy of H for a chain with length L =140 are
shown in figure 4.

3. Eigenvectors and finite-size scaling

The magnetization operator o™ (1) anticommutes with the parity operator whereas the
energy operator o’(1) commutes. It follows that one may deduce their scaling
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dimensions x,, and x, from the finite-size behaviour of the following matrix elements
{Barber 1983, Henkel 1990);

m(1) ={o|e*(1)|0)~ L™ (3.1a)
e(1)=(e|c*(1)|0y~ L™ (3.1b)

where |0) is the ground state, |} the first odd excited state and |} the first even excited
ctntn mf IF Qlean Y smd Fd bl tn 350 i d smpnsdtny cmmtbmng dbha T oamae o #0030 i o]
Sldl Ul 11, JlHLE U/ alll |O) UTIOIE LU ULIICTCIHL PALILyY 500101, LG LallCZ0S LINAldEguildil-
zation method has been used to determine x,, on chains with lengths L=4-14. The
results shown in figure 5(a) are consistent with

x, =3 h>7 (3.2a)
Xn=0 Xp=2 h<lJ (3.2b)

where x,,, governing the decay of the spin-spin correlations along the interface when
the ofi-critical half-space is ordered, is obtained with the next odd excited state of H
in equation (3.1a) (figure 5(b)).

Fermion techniques may be used to study e(1), since then both states belong to
the even sector. With

ley=nenil0) (3.3a)

o ()=2c(1e(1) -1 (3.3b)
equations (2.3) and (2.6) lead to

e(1) = ¢, (D eho(1) — dal1)4,(1). (3.4)
Let

X=alAy (X=A,BC, D) (3.5)
then the first three equations of the linear system (2.17) may be rewritten as

¥

oo A :
[+(I2=1)e™] E—‘i+ PhJ e"Lﬁ—C+ Pht et -‘2—D= —[1+(J*=1)e*] (3.6a)
_e-ik(uzmé_B_,_eq(uzm9_C+e-qttfz+1)%2= ik(L/2+1) (3.6bh)

A A A
e " —A—B+Pe"”“+”é—9+P e_"‘L"”%Q:—e”‘ (3.6¢)

A A A

where, for critical excitations, the A, are the following determinants:

Aa=Pe*?[1+3 I -m -2+ =T e [1+0O(L7%] (3.7a)
Ap=—4% (3.7b)
Ae=—2ike "M U[1+0O(L™?)] {3.7¢)
Ap=2iP(-1)" e (e 2= h[1+0O(L™?)]. (3.7d)

Using equations (2.11), (2.19), (3.5} and (3.7), after some algebra, one gets
ép(n)y=iaP " [2sin kn+(J7—h* =2+ | = Jsin k(n - DJ[1+O(L™)]  (3.8a)
Gap(n)=21al(~1)"P(e? J* = hJ) e —k 4" 1+ O(L7F)] (3.8h)
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Figure 5. Critical exponents obtained through finite-size scaling: (a) x,, (L=4, 14),
(&) xi, (L=8,16), (¢) x, (L=10, 180).
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and

L/2 azequZL[1+O(L—l} h>J]

2 _

"Z::I |¢1p(n)| {azeqL(Jz_hz)zL[1+O(L_1)] h<l (3.9)

whereas
L Ba’e! J3 (R -0 h=1J
2__
o2y, [0 {Saze‘”‘ PR he<J (3.10)

so that, for critical excitations, the contribution of the off-critical part to the norm of
the eigenvectors may be ignared and one gets

a ={e_qm KL+ O(L™)] h>J (3.11)
e AP -h)T'LTV1+0(L7Y) h<l. :
Eguations (2.7) and (3.84a) lead to
2iPL7 2+ O(L7?) h>1J
b1} = {2i1‘rP(2p+ D=L 0Ly hey O
_[=2imP(2p+ 1)L+ O(L7¥%) h>J
wp(l)m{ZiPL—Uz“'o(L_a/z) h<] (3.12b)
and finally
~87L 2+ O(L™Y) h>J
o) = {—8w(12—h2)“L'2+0(L'3) he<J (3.13)
sa that
X, =2 b (3.14)

These values have been confirmed by a numerical study on chains with lengths
L =10-180 (figure 5(c)).

4. Discussion

The scaling dimensions x,, x,, and x,, associated with the critical-off-critical interface,
obtained through finite-size scaling coincide with the surface exponents of the 2p Ising
model either with free boundary conditions (ordinary transition) when h > J (Binder
1983) or fixed boundary conditions (extraordinary transition) when h <J (Burkhardt
1985).

The conformal algebra associated with the critical 20 Ising model is the Virasoro
algebra with central charge ¢ =3 (Belavin er af 1984, Cardy 1987). The lowest weights
A of the irreducible representations giving the conformal dimensions of the primary
fields & are A, =0, 3, +%. For free or fixed boundary conditions, the conformal towers
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are constructed from the lowest weights and their descendants (von Gehlen and
Rittenberg 1986, Cardy 1986):

E?~Eo=1;(Ad,+r) (4.1)

and the levels degeneracy d (Aq, r), given intable 1, can be computed from the character
functions of the Virasoro algebra (Rocha-Caridi 1985).

Table 1. Lowest weights Ay, of the irreducible representations of the Virasoro algebra with
central charge ¢ =1 and degeneracy d(Ag, r) of the levels Ag+ r in the conformal towers.

Ag 0 1 2 3 4 5 6 7 8 9 10
0 1 1 1 2 2 3 3 5 5 7
i 1 1 1 1 2 2 3 4 5 6 8
& 1 1 1 2 2 3 4 5 6 8 10

With the critical-off-critical system, [ is the width L/2 of the critical part so that
the prefactors in equations (2.23}, (2.24) and (2.25) are in agreement with equation
(4.1). The energy spectrum in the even sector of H, when h # J, corresponds to the
conformal tower with Ay =0 starting with the second descendant and one recovers
X, =2 which is common to the ordinary and the extraordinary transitions (figure 6(c)).
In the odd sector when k> J, we get the conformal tower of the magnetization operator
with Ay = x,, =3, whereas when h>J, Ay =x,, =0 so that the tower begins with r=0
in equation (4.1). The first descendant does not appear since d(0, 1) =0 in table 1 and
the second gives x|, =2 (figures 6{a) and 6(b)). Although when h < J the exponents
of the extraordinary transition are those obtained with fixed boundary conditions
(Cardy 1986}, here the Z, symmetry is not broken by the boundary conditions and we
get two degenerate odd and even sectors.

We have worked with constant values of & and J on the off-critical part of the
chain. It must be emphasized that these constant values cannot be obtained through
the conformal mapping w= L/2% In z of the infinite plane onto the strip. Let A#(z),
with scaling dimension y, =1, be the deviation from criticality on the off-critical
half-space on the infinite plane. With z = p €'°, the local dilatation is

b(z) = |w'(2)|" =3{—" (4.2)
50 that
At(w)=b(z)-"-‘At(z)=-2-%0At(z) (4.3)

and we have to take A#7(z)~ L/p in order to get a constant deviation from criticality
on the strip. The L-dependence of the interaction on the plane is clearly not acceptable.

One might use the conformal mapping after a renormalization of the plane giving
a flow towards either the high- or the low-temperature fixed point in the off-critical
part together with an irrelevant interfacial perturbation and leading to either J/h =10
or h/J =0 on the strip. A renormalization of the strip with either 2> J or h <J leads

to the same behaviour. ;
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(a)

Xm

10°7°
Figure 6. Scaling dimensions deduced from the gap-exponent relations on chains with
lengths L=10-180; (a) x,,, (b) x,, (¢} x,.
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To conclude let us mention that this work is easily extended to the case of a critical
sector with an opening angle @ in an otherwise off-critical system.

Note added in proof. The critical behaviour at the interface between two half spaces with different critical
temperatures has been recently considered in the framework of wetting theory by 1gléi and Indekeu {1990).
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