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Critical-off-critical interface in the Isirig quantum chain 
and conformal invariance 

Bertrand Berche and Lo'ic Turban 
Lahoratoire de Physique du Solidet, UniverritP de Nancy I ,  BP 239, F54506, Vandmeuvre 
l&s Nancy ceder, France 

Received 12 July 1990 

Abstract. The low-energy excitation spectrum of an king quantum chain in a transverse 
field which i s  critical ( h  = J = I j for I s n s L/2 and off-critical ( h  # I )  for L / 2 <  n S L is 
calculated up to O(L- ' j .  Interface critical exponents are determined numerically in the 
add sector and exactly i n  the even sector using finite-size scaling. One gets an ordinary 
surface transition when h > J  and an extraordinary surface transition when h <J. The 
gap-exponent relation is verified, the mass gaps and the levels degeneracy are in agreement 
with conformal invariance. 

1. Introduction 

Using conformal invariance (Belavin et a /  1984, Cardy 1987, Itzykson er a/ 1988) an 
infinite ZD system at its critical point may be mapped onto a strip with finite width L 
on which the lowest gaps of the Hamiltonian associated with the transfer operator in 
the extreme anisotropic limit (Kogut 1979, Henkel 1990) vanish as L-' with amplitudes 
proportional to the scaling dimensions of the corresponding operators (Cardy 1984). 
Furthermore the energy spectrum displays tower-like structures with equidistant levels, 
the degeneracy of which is completely determined by conformal invariance. 

Although translational and rotational invariance are in principle required, it has 
been shown that conformal invariance is preserved with localized defects (Henkel and 
Patkos 1987,1088, Henkel et a /  1989) and even for extended defects (Hinrichsen 1990) 
provided the defect configurations are commensurate. In the case of a long-range 
marginal inhomogenity the gap-exponent relations are still verified (Burkhardt and 
Igloi 1990, Igloi et a /  1990) and tower-like structures observed but the degeneracy of 
the levels is not yet understood. 

In the present work, we show that conformal invariance still holds for a critical-off- 
critical interface in the ZD king model. This problem differs from the case considered 
previously (Hinrichsen 1990) where the extended defects were critical sectors in the 
plane with modified values of the critical interactions. We consider the quantum Ising 
chain Hamiltonian (figure 1) 
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Figure I .  Critical-off-critical interface in the I& quantum chain in a transverse field: h 
and .I( +1) are the transve~se field and the first-neighbour interaction in the off-critical part. 

where ux and U' are Pauli spin operators, h and J f 1 the transverse field and the 
nearest-neighbour coupling in the off-critical part (L/2 < n s L). The prefactor in (1.1) 
has been introduced to ensure that the equations of motion are conformally invariant 
in the critical region (von Gehlen er a l  1985). The chain length is assumed to be even 
and periodic boundary Conditions are imposed with 

u"(L+ 1) = UX(l). (1.2) 
This paper is organized as follows. In section 2 we calculate the low-energy excitation 

spectrum of H from which the energy levels in the two parity sectors are constructed. 
This is done using fermion techniques (Lieb et al 1961), the excitations being obtained 
as the solutions of an eigenvalue problem. In section 3 the corresponding eigenvectors 
are determined allowing us to get the dimension of the interface energy operator x, 
through finite-size scaling. The dimension of the magnetization operator x, is obtained 
through a numerical finite-size scaling study on the spin Hamiltonian. The results are 
discussed in section 4. 

2. Low-energy excitation spectrum 

The spin Hamiltonian (1.1) commutes with the parity operator P = n , = ,  u ' (n )  so that 
the eigenvalues are either even ( P  =+1) or odd (P = -1). Using the Jordan-Wigner 
transformation (Jordan and Wigner 1928) and omitting a constant term, one gets 

H = - 1 [c+(n)c(n)+f(c+(n)-  c(n))(c'(n+ l ) + c ( n  + I ) ) ]  

L 

LIZ 

"=I 

J 
- [ hc+(n)c(n)+- (c'(n) - c(n))(c'(n + I ) + c ( n +  I ) ) ]  (2.1) 

"=L/2+1 2 

with the boundary conditions 
c ( n + l ) = - P c ( 1 )  (2.2a) 

c+(n + 1) = - fc+(  1). (2.26) 

This is a quadratic form in fermion operators in each parity sector which may be 
diagonalized through the Bogoliubov transformation (Lieb et al 1961): 

L 
q p =  X (g,,,c+(n)+h,,c(n)) (2.3a) 

tlf= 1 (g,,,c(n)+h,,,,c+(n)) (2.3b) 

, ,= I  

L 

" l l  

where the canonical operators satisfy the fermion anticommutation relations 

{%, V J  = CVS 1 tl;,} = 0 (2.4a) 

{ V p .  7 7 3  = b. (2.46) 
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In this way, one gets two diagonal Hamiltonians 

H"=Z A ; ( v ; v p - ; )  
P 

one for each parity sector and the even (odd) eigenstates of H correspond to the even 
(odd) eigenstates of H+'-' whereas the remaining states acquire physical meaning only 
for antiperiodic boundary conditions. 

+D ( n  1 = (- 1 )" (gpn + h,, ) 

h ( n )  = (-1 )"(gp. - h,. ) 

Introducing the normalized eigenvectors 

(2.6a) 

(2.6b) 

related through 

- h ( n ) + , ( n ) + J ( n ) + , ( n +  1) =A:+,P(n) (2.7) 

h ( n )  = J ( n )  = 1 ( n  = 1,  i) (2.8a) 

(2.86) h ( n )  = h 

J ( n )  = J ( n  =;+ 1 ,  L-  1 )  ( 2 . 8 ~ )  

J (  L )  = -PJ (2 .8d)  

with 

( n  = 5 L + 1, L )  

the (A:)* are solutions of the eigenvalue problem 

h ( n - i ) J ( n - l ) & ( n - I )  

+ ( ( A ; ) 2 - h 2 ( n ) - J 2 ( n - l ) ) + , ( n ) + h ( n ) J ( n ) ~ , ( n + l )  = O  (2.9) 

with J ( 0 )  = J ( L )  and the same notations as  above. In the critical part ( n  = 2  to L / 2 )  
one gets 

(2.10) +i,(n-l)+[(A:)2-21+,,(n)+ +i,(n + 1) = O  

+ , , ( n ) = A  e'*"+Be"'" (2.11) 

(h,')2=4Sin2- (2.12) 

so that 

and 

k 
2 

whereas in the off-critical part ( n  = L / 2 + 2  to L -  1): 

hJ+2,,( n - l)+[(A;)'- h2  -J2 ]&(  n )  + hJ&( n + 1 )  = O  (2.13) 

and the components of the eigenvectors are given by 

,$pjiij = c @"+E (2 . i4)  

with: 

h'+ J2-(A;)' 
2 hJ 

cosh 9 = (2.15) 
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The quantization of the eigenvalues (2.12) is imposed by the boundary conditions 

4tP(O)+(J2- l ) C l p ( l ) =  -PhJ42,(L) (2.16a) 

(2.166) 

leading to the linear system 

[1+(J2- 1) eck]A+[I + ( J 2 -  1) e-"]B+PhJ e"C+ PhJ e-qLD = 0 (2.17a) 
e i k i L / z + l i A +  e - - i k i L / 2 + I l ~  - e ~ i L / 2 + l l ~  - e - d L / 2 + 1 1 ~  = o  (2.176) 

e i k A + e - i k B  + e d L + i l c + p  e - q < L + ~ ~  D=O (2 .17~)  

IB [ ( h 2 -  1) e i k i L / 2 + l J + e i k i L / 2 + 2 J  ] ~ + [ ( h 2 -  1) e - i k ( L / 2 + l l + e - i k i L / 2 + 2 i  

- hJe4(L /2+2 'C-hJ  e-.(L/2t2)D=0, (2.17d) 

The secular equation reads: 

2 
kL . qL 
2 2 

2PhJ sin k sirlh q + ( J ' -  l ) ( h 2 -  1) sin- sinh-+ hJ(2- h2-J2) sin 

+ ( h 2 + J 2 - 2 ) s i n  
2 

(2.18) -2hJ s in(kL+k\  s i n h ( e - 4 )  +sinfkL+Zk\ sinh-=O. q L  
\ 2  J \ 2  J \ 2  1 2 

Looking for the critical modes A,'-O(L-'), equation (2.15) gives 

+ O( L-2) 
h 2 +  J 2  

coshq=- 
2hJ 
2 2  lh - J I  sinh q =- + U ( L  - j  
2hJ 

and equation (2.18) reduces to 

kL . qL 
2 2 

k cos-sinh-[[IhZ- J2I+0(L-*)1 = O  

(2.19a) 

(2.i96) 

(2.20) 

so that, using (2.12), non-vanishing solutions are obtained when 

(2.21) 2 r  
L I A ; ~  =- ( p + f ) + ~ (  L - ~ )  ( p = O ,  1,2 ,... ). 

To this order in L-' the same excitations are obtained in the two parity sectors. From 
equation (2.5) the ground-state energy of H' is 

(2.22) r* I T .  l h * l  
c o = - l L l ~ ~ p l  

r 

and higher levels are obtained by adding fermions to the ground state with a change 
of the parity for an odd number of excitations. Through a comparison with tridiagonali- 
zation results for the spin Hamiltonian (figure 2), one tinds that the ground state of 
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-15 +---- rl -1 -1 -.-$ t -l 
-16 11 * A; ----iJ 
-17 

Figure 2. Construction of the spectrum of H from the even levels of H* and the odd levels 
of H - .  The central spectrum has been obtained through tridiagonaliration of the spin 
Hamiltonian (L= IO, 1 = I ,  top h =OS, bottom h = 2.0). The ground stale of H -  i s  odd 
when h < J. 

H +  is always even whereas for H -  it is even when h l J >  1 and odd when h / J < I .  
This last result is linked with the presence of a negative excitation A; < O  when h / J  < 1. 
Then the ground state contains one fermion and IA;l may be reinterpreted as a hole 
excitation energy. The same thing happens for the homogeneous system in  the ordered 
phase (Pfeuty 1970). Since equation (2 .21)  only gives the critical modes, we have to 
study numerically the behaviour of the gap between the two ground states. It turns 
out that E ; - E l  vanishes exponentially with L as shown in figure 3. 

The ground state of H is always even and Eo = ET. Higher levels in the even sector 
are constructed by adding an even number of excitations and one gets the mass gaps 

(2 .23)  
2n 

E :  - E~ = - r +  O( L-') 
L 

r = 2 , 3 , 4 , .  . . 

when h # J. 

needed to get the energy levels of H in the odd sector and 
Since the ground state of 2- is even when h > J, an @ci number oi  excitations is 

r = O , 1 , 2  , . . _  h > J .  (2 .24)  

When h c J,  the ground state of H -  is odd and belongs to the spectrum of H.  Up 
to O(L- ' )  this state is degenerate with the ground state, a behaviour which is related 
to the onset of long-range order for the off-critical part in the thermodynamic limit. 
Higher odd states of H are obtained with an even number of excitations so that 

2 
E ;  - Eo =A (:+ r )  +0( L-') 

L 

7 
E - - E  - c r + o ( L - 2 )  r = O , 2 , 3 , .  . . h < J .  (2 .25)  ' " - L  
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Figure 3. Variation of logarithm of the gap between the ground states of H* and H -  as 
a function of the chain length L for different values of  the transverse field in the off-critical 
part and J = 1. 

I +1 -1 

2 

0 

.1 

I 7 1  

121 

h r J  

Figure 4. Mass gaps and degeneracy of  the levels in the two parity sectors of H for a chain 
with length L =  140, J = I ,  h = O S ,  (left) and 2.0 (right). 

The mass gaps and the levels degeneracy of H for a chain with length L =  140 are 
shown in figure 4. 

3. Eigenvectors and finite-size scaling 

The magnetization operator U,'( 1) anticommutes with the parity operator whereas the 
energy operator U'(]) commutes. It  follows that one may deduce their scaling 
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dimensions X, and x, from the finite-size behaviour of the following matrix elements 
(Barber 1983, Henkel 1990): 

m ( l ) = ( U i u " ( ~ ) l ~ ) - L ~ " , , ,  (3.1~1) 

e(1) =(e lu ' (  1)lo)- L-",. (3.16) 

where 10) is the ground state, 1 ~ )  the first odd excited state and le) the first even excited 
n. 13111LC I", all" IV, ucror,g ,U "LIICICIIL p"LLLy SCGLUI>, L1,C Ld"G'US rr,"lagurL'llr- 

zation method has been used to determine x, on chains with lengths L=4-14. The 
results shown in figure 5(a)  are consistent with 

"I ̂ .^^ c U c:.."- In, .̂._I I - t L - 8  >:= ....--.--- .L. I _̂._.. .-:>: ._^_^ I: >tat= U1 

x m *  h > J  (3.2a) 

x, = 0 xA=2 h < J  (3.26) 

where x i ,  governing the decay of the spin-spin correlations along the interface when 
the off-critical half-space is ordered, is obtained with the next odd excited state of H 
in equation (3.la) (figure 5(b)). 

Fermion techniques may be used to study 411, since then both states belong to 
the even sector. With 

le )=  170+17):10) 

U,(l) =2c+( l )c ( l )  -1 

41)  = 4, (1)@dl  1 - &(1)$,(1). 

equations (2.3) and (2.6) lead to 

Let 

X = aAx ( X  = A, E, C, D )  
then the first three equations of the linear system (2.17) may be rewritten as 

[ 1 + ( J 2 - I ) e i k ]  
A A 
A; -a A .  A; 

[ 1 + ( J 2  - 1) e-ik] B+ p u  eqL x+ PhJ cU = - 

- i k c L / 2 + I l ~ + e ~ l L / l + I l  A c + e - q l L / 2 + I J  h = e i k ' L / 2 + l J  
- e  

A* A A  A A  

- 
- ik &+ p e q ( L + I )  2 A + p e - + l L + l l L L - - e i k  A 

e 

where, for critical excitations, the Ax are the following determinants: 

AA = P eqL'2[1 +f(J'- h'-2+ lh2 - J'I) e-"][l +O(L-*)] 

AA A A  AA 

p B  = -A: 
Ac = -2ik e - U l L / 2 + l l  [1+o(L-2)] 

Au = 2iP(-l)' eqL(e'J2-hJ)[1 +O(L-')]. 

Using equations (2.11), (2.19), (3.5) and (3.71, after some algebra, one gets 

c$,,,(n) = i d  e'"'2[2 sin k n + ( J ' -  h2-2+lhZ-J21) sin k ( n  - 1)][1 +O(L-')] 

& ( n )  = 2ia[(-1)PP(eq J 2  - hJ) k eq'n-L/2-'l l[ l+O(L-*)l  

( 3 . 3 ~ ~ )  

(3.36) 

(3.4) 

(3 .5)  

(3.6a) 

(3.66) 

(3 .6~)  

(3.7~7) 

(3.76) 

(3.7c) 

(3.7d) 

(3.8a) 

(3.86) 
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1.1 
O R 3  . . . I . I . , . . . I 

0,6 - 

0.L - 

0.2 - 

h ;1  

1 ;+“.5, , , \ , -, 1 
~ ~~ 

0.25 0 

0 lo 20 30 20 1 0  0 

10’1~’  

2.51 . , . , . I  
h = l  

1.5 

1.5 

0 2 4 6 8 1 0 1 0 8 6 4 2 0  

I O ~ / L ~  

Figure 5. Critical exponents obtained through finite-size scaling: ( a )  x,,, ( L  
( b )  x:,, (L=& 16). ( e )  x,. ( L =  IO, 180). 

:4 ,  14), 
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and 

whereas 

8a2eqL J 2 ( h 2 -  J 2 ) - '  h > J  
n = L / 2 + 1  h < J  

(3 .10)  

so that, for critical excitations, the contribution of the off-critical part to the norm of 
the eigenvectors may be ignored and one gets 

e-qL/2 k- 'L- ' /* [  1 +O(L- ' ) ]  h > J  
a = [ e ~ ' L / 2 ( J 2 - h 2 ) - l L - l / 2 [ l + O ( L - 1 ) ,  h < J. 

(3.11) 

Equations (2 .7)  and (3.8a) lead to 

2 i ~ ~ - " ~ +  o ( L - ~ / ~ )  h > J  
(3 .12a)  

2 i r P  ( 2 p f  1 ) ( J 2  - h2)- '  L-3'2+0(L-5'2) h < J  

and finally 

(3 .126)  

(3 .13)  

so that 

x, = 2 h # J .  (3 .14)  

These values have been confirmed by a numerical study on chains with lengths 
L =  10-180 (figure S ( c ) ) .  

4. Discussion 

The scaling dimensions x,, x, and x: associated with the critical-off-critical interface, 
obtained through finite-size scaling coincide with the surface exponents of the 20 king 
model either with free boundary conditions (ordinary transition) when h > J (Binder 
1983) or fixed boundary conditions (extraordinary transition) when h < J (Burkhardt 
1985). 

The conformal algebra associated with the critical 2D lsing model is the Virasoro 
algebra with central charge c =; (Belavin er a/ 1984, Cardy 1987). The lowest weights 
A* of the irreducible representations giving the conformal dimensions of the primary 
fields @ are A* = 0, f ,  A. For free or fixed boundary conditions, the conformal towers 
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are constructed from the lowest weights and their descendants (von Gehlen and 
Rittenberg 1986, Cardy 1986): 

B Berche and L Turban 

71 
E!  - Eo =- (A,  + r )  (4.1) 1 

and the levels degeneracy d(Aa, r), given in table 1, can be computed from the character 
functions of the Virasoro algebra (Rocha-Caridi 1985). 

Table 1. Lowest weights A* of the irreducible representations of the Virasora algebra with 
central charge c = 4 and degeneracy d(A,, r )  of the levels A*+ I in the conformal towen. 

0 1 2 3 4 5 6 7 8 9  10 

0 1 0 1  I 2 2  3 3 5  5 7 
I 1 1 I 2 2 3 4 5 6  8 

1 I 2 2 3 4 5 6 8  IO - A 1 

With the critical-off-critical system, I is the width L/2 of the critical part so that 
the prefactors in equations (2.23), (2.24) and (2.25) are in agreement with equation 
(4.1). The energy spectrum in the even sector of H, when h # J, corresponds to the 
conformal tower with A* = 0 starting with the second descendant and one recovers 
x, = 2  which is common to the ordinary and the extraordinary transitions (figure 6 ( c ) ) .  
In the odd sector when h > J ,  we get the conformal tower of the magnetization operator 
with Aa = x, = f, whereas when h > J, A. = x, = 0 so that the tower begins with r = 0 
in equation (4.1). The first descendant does not appear since d ( 0 ,  1) = O  in table 1 and 
the second gives x A = 2  (figures 6(a) and 6 ( b ) ) .  Although when h <  J the exponents 
of the extraordinary transition are those obtained with fixed boundary conditions 
(Cardy 1986), here the Z, symmetry is not broken by the boundary conditions and we 
get two degenerate odd and even sectors. 

We have worked with constant values of h and J on the off-critical part of the 
chain. It must be emphasized that these constant values cannot be obtained through 
the conformal mapping w = LIZ97 In L of the infinite plane onto the strip. Let A t ( r ) ,  
with scaling dimension y, = 1, be the deviation from criticality on the off-critical 
half-space on the infinite plane. With z = p e”, the local dilatation is 

so that 

and we ha\ 

I - 2 w  b ( z ) = l w ’ ( z ) l -  -- 
L 

2 71P A i ( w )  = b ( z ) ” , , A f ( z )  =- A f ( z )  

to take A t ( z ) -  Llp in order to get 

L 

(4.2) 

(4.3) 

constant deviation from criticality 
on the strip. The L-dependence of the interaction on the plane is clearly not acceptable. 

One might use the conformal mapping after a renormalization of the plane giving 
a flow towards either the high- or  the low-temperature fixed point in  the off-critical 
part together with an irrelevant interfacial perturbation and leading to either J / h  = O  
or h / J  = 0 on the strip. A renormalization of the strip with either h 7 J or h < J leads 
to the same behaviour. I 
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h i  0.9 

0 7 

1.7.. I . I .  I .  I . I . I . I .  I . I .  I . 
0 2 L 6 0 1 0 1 0  0 6 4 2 0 

IO’/L~ 
Figure 6. Scaling dimensions deduced from the gap-exponent relations on chains with 
lengths L =  10-180: ( a )  x ,,,, ( b )  x:,,, ( c )  x,.. 



256 B Berche and L Turban 

To conclude let us mention that this work is easily extended to the case of a critical 
sector with an opening angle 8 in an otherwise off-critical system. 

Nore odded in proq1: The critical behaviour at the interface between twa half spaces with different critical 
temperatures has been recently considered i n  the framework af wetting theory by lgl6i and lndekeu (1990). 
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